

Application of Probabilistic Risk Assessment (PRA) During Conceptual Design for the NASA Orbital Space Plane (OSP)

Presented to PRAXI-5 Cleveland, OH October 28-29, 2004

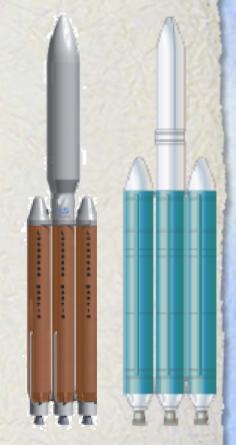
Based on a publication by:

James Stott and Dr. Yohon Lo of

Hernandez Engineering at Marshall Space Flight Center

Dr. Fayssal Safie and James Rogers of NASA - Marshall Space Flight Center

Introduction - Why do we do PRA?


- To estimate risks and associated uncertainties of low frequency but high consequence events
- As part of Continuous Risk Management to support riskbased decision making: Upgrades and Trades
 - For a mature system: "to support decision making on risk acceptability, and on choices among options for risk reduction"*
 - For a system under development: "to guide trade-offs between safety, reliability, cost, performance, and other tradable resources"*
- This presentation talks about one way that PRA can be used in the design phase of a complex, highly visible system

- The Orbital Space Plane Program was initiated to provide assured access to and from the International Space Station (ISS)
 - ISS Crew Rotation via Crew Transfer Vehicle (CTV)
 - Evacuation via Crew Rescue Vehicle (CRV)
- Competitive contractor teams
- Multiple vehicle concepts
- To be launched on top of an existing Expendable Launch Vehicle (Atlas V and Delta IV)
- CRV was scheduled to be online by 2008, CTV by 2012
- OSP Program was superseded by restructuring to support the President's new space vision in January 2004

Atlas V-H Delta IV-H

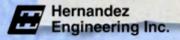
OSP Goals

- Significant improvements in crew safety:
 - Crew Rescue Vehicle (Compared to Soyuz Reentry)

Objective 1/800 with 80% confidence

Minimum Threshold 1/800 with 50% confidence

Crew Transfer Vehicle (Compared to Shuttle Ascent & Reentry)


Objective 1/400 with 80% confidence

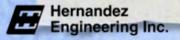
Minimum Threshold 1/400 with 50% confidence

- Availability requirement (On-orbit)
 - Crew Rescue Vehicle

Objective
 95% with 90% confidence

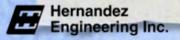
Minimum Threshold 95% with 50% confidence

Integrated RMS Approach


- What is an Integrated Reliability, Maintainability, and Supportability approach to PRA?
 - 2GRLV "Lesson Learned"
 - Integrated RMS approach to the PRA incorporated input from Reliability, Maintainability, and Integrated Logistics Support (ILS) Working Groups.
- NASA is beginning to implement an integrated RMS approach for new programs
 - OSP was the first space flight system that utilizes PRA in every step of its design process in conjunction with other traditional engineering disciplines

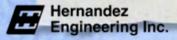
OSP PRA Evolution

- ISAT (Integrated System Analysis Team)
 - Technology investigation
 - Initiated during Second Generation Reusable Launch Vehicle Program
- RAC (Requirements Analysis Cycle)
 - Evaluate Level 1 and Level 2 OSP Requirements
 - Perform system level trade studies
 - PRA approach with integrated ISAT results.
- NASA OSP PRA
 - Based on the most feasible design from RAC and modeled CTV mission profile.
- OSP Prime contractors PRA
 - NASA "Guided" Groundrules and Assumptions for consistent analysis



NASA OSP PRA Process

- NASA OSP PRA was a NASA wide and NASA led team effort with NASA MSFC S&MA / HEI as the lead with members from HQ, JSC, KSC, LaRC, SAIC & Futron
- Established ground rules and assumptions up to SDR, such as:
 - Modeling of Loss of Crew and Loss of Mission started from Crew Ingress to Crew Egress
 - Launch on a Atlas V
 - OSP remains on station for 180 days
- Created typical Mission Regimes and associated Mission Event Trees identifying the major operational and vehicle states
 - Such as: Ascent, Orbit, Docking, ISS Mated, Re-Entry/Landing
 - Abort scenarios are identified where appropriate
- Constructed fault trees down to system level
 - Use of existing PRA (Shuttle, ISS, Soyuz, ELV) results when possible
- Determined that Program Level I safety requirement can be met

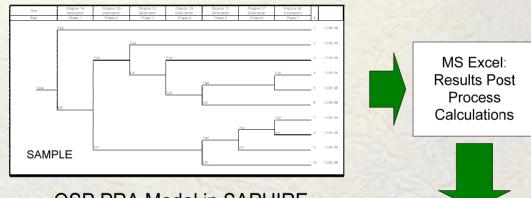


Contractor OSP PRA Process

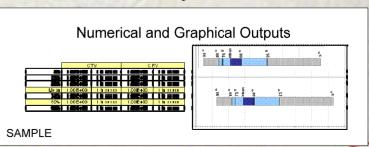
- OSP Program redirected the NASA OSP PRA WG to stop development of NASA OSP PRA and to support the Contractor PRA effort
- NASA OSP PRA WG sanitized the existing NASA OSP PRA models and results for the contractors
 - Generic top level event tree models (non-design specific)
 - Via contractual requirement document (OSP PRA Plan)
 - Purpose
 - Ensure consistency among the contractors
 - Test problem for contractors to demonstrate its architecture's capabilities
- 3. Contractors to modify and to expand the generic top level model to meet its design capabilities
- 4. Weekly telecons with All Contractors and NASA WGs
 - Allow contractors to ask questions
 - Unified voice / recommendations from NASA to Contractors
- 5. Program Cancellation ...

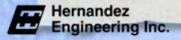
Summary of OSP PRA Process

EELV Data and **EELV PRA Results** Shuttle, Soyuz, ISS PRA Results


Shuttle, Soyuz, ISS **PRA Results**

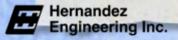
Engineering Analysis, Judgment and Generic Data


Ascent Model

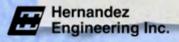

On-Orbit Model

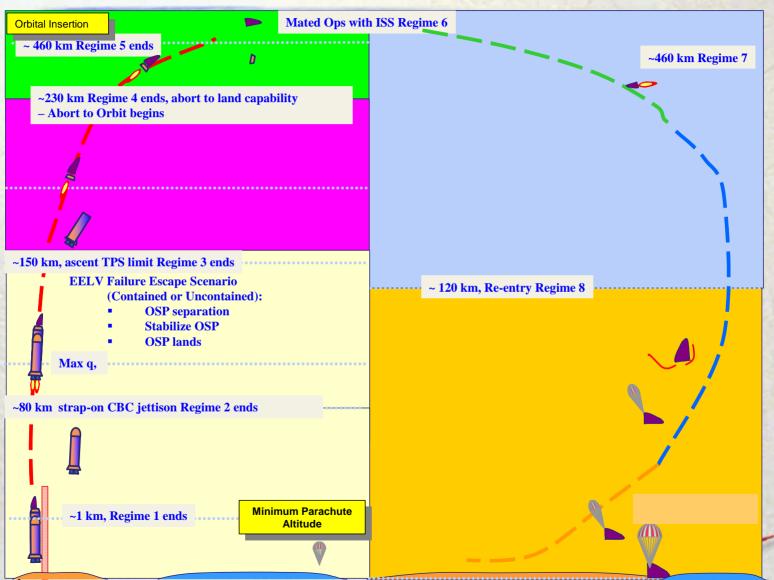
Descent Model

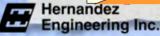
OSP PRA Model in SAPHIRE



Conclusions


- PRA is a valuable tool to perform system level trade studies on conceptual vehicles
 - By integrating PRA in the design process, it allows for a systematic approach in performing the various trade studies
 - Provides basis for risk based decision making
- To get the most benefits from PRA in the design process
 - Maintain close interactions between PRA and all program teams to improve state of knowledge
 - Formulate ground rules early and maintain proper documentation to ensure consistency and traceability


Backup



Typical OSP Operating Regimes

